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In this work we have developed an in silico model to predict the inhibition of 8-amyloid aggregation by
small organic molecules. In particular we have explored the inhibitory activity of a series of 62 N-phe-
nylanthranilic acids using Kohonen maps and Counterpropagation Artificial Neural Networks. The effects
of various structural modifications on biological activity are investigated and novel structures are
designed using the developed in silico model. More specifically a search for optimized pharmacophore

patterns by insertions, substitutions, and ring fusions of pharmacophoric substituents of the main
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building block scaffolds is described. The detection of the domain of applicability defines compounds
whose estimations can be accepted with confidence.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) is a chronic, slowly progressive
neurodegenerative disorder and is a very common form of
dementia in the elderly [1]. Over the past years many efforts have
been made to cure AD or stop its progression, however, there is still
no effective treatment [2]. The $-amyloid peptide (Af) is produced
by proteolytic cleavage of the amyloid precursor protein (APP) and
plays a central role in the neuropathology of AD. As (-amyloid
protein aggregation is present in Alzheimer’s disease, recent efforts
have focused on the identification of small organic molecules that
can act as f$-amyloid aggregation inhibitors [3—5]. A variety of
synthetic methods have been proposed recently for the design of
new molecules with enhanced activity [6—9].

* Corresponding authors.
E-mail addresses: afantitis@novamechanics.com (A. Afantitis), georgiamelagraki@
gmail.com (G. Melagraki).

0223-5234/$ — see front matter © 2010 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ejmech.2010.11.029

In silico methods have emerged as a useful tool in the identifi-
cation of novel compounds with improved characteristics [10—14].
Different regression or classification methods have been employed
[15—18] for this purpose in an effort to minimize the time and cost
associated with identifying new leads.

In this study we have developed a classification model using
a recently published dataset of 62 N-phenylanthranilic acids that
were explored as potent $-amyloid aggregation inhibitors [19]. A
great variety of in silico methods [20—25] have emerged as effective
tools to predict the activity of a new molecule prior to its actual
synthesis. In this work we present the development of an accurate
and robust classification model based on Kohonen maps (or Self
Organizing Maps, SOMs) and Counterpropagation Artificial Neural
Networks [26—28] (CP-ANNs). The validated in silico model
combined with the selected molecular descriptors, which demon-
strate discriminatory and pharmacophore abilities, has been
applied for the investigation of the effects of various structural
modifications on biological activity. Novel structures were esti-
mated using the developed in silico model. The detection of the
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domain of applicability defined the compounds whose estimations
can be accepted with confidence.

2. Material and methods
2.1. Dataset

A series of 62 N-phenylanthranilic acids that act as -amyloid
aggregation inhibitors have been collected from the literature [19)].
The inhibitors were tested with Beta Amyloid Self Seeding Radio-
assay (BASSR) and the experimental IC5q values are a product of the
true affinity of the small molecule, the stoichiometry of binding,
and the concentration of the target aggregation intermediate [19].
The compounds are shown in Tables 1-3.

2.2. Descriptors

For each compound we calculated a large number of descriptors
that account for their chemical, physicochemical, electronic and
quantum characteristics. Following the optimization of the
compound geometries using the PM6 method included in
MOPAC2009 [29—31], the descriptors were calculated using Chem-
istry Development Kit (CDK) [32] and MOPAC2009 [29—31] (Table
4). The PM6 method was chosen for the geometry optimizations
since it offered a good balance between speed and accuracy [29—31].
A recent paper highlighted the quality of models obtained by PM6
method as similar to that of models based on B3LYP [33] (Density
Functional Theory). After the optimization 172 input attributes were

Table 1

calculated for each compound including topological, structural,
electronic and physicochemical descriptors. The $-amyloid aggre-
gation inhibition data along with the corresponding full set of
descriptor values were used in the variable selection procedure.

2.3. Separation into a training and a test set

The separation of the dataset into training and test sets was
performed according to the popular Kennard and Stones algorithm
[34]. The algorithm starts by finding two samples that are the
farthest apart from each other on the basis of the input variables in
terms of some metric, for example, the Euclidean distance. These
two samples are removed from the original dataset and placed into
the calibration dataset. This procedure is repeated until the desired
number of samples has been reached in the calibration set. The
advantages of this algorithm are that the calibration samples map
the measured region of the input variable space completely with
respect to the induced metric and that the test samples all fall
inside the measured region.

2.4. Modeling methods

Variable selection techniques have become an apparent need in
many chemoinformatics applications and different methods have
been successfully applied as variable selection tools in QSAR
problems [35,36]. Before running the model the most significant
attributes among the 172 available were pre-selected for the
training set using InfoGain variable selection and Ranker evaluator

Dataset: ethyl-linked derivatives and 4-nitro substitution. Model predictions using CP-ANN.

R+
=

1-26

R2

N
CO,H

d R! R? BASSR ICso (M) Class Threshold (>100 M) Training Data (Predicted) Test Data (Predicted) Class Weight Active Class Weight Inactive
1  4-MeO H >100 inactive - active® 0.75 0.25
2 N-DHIQ? H >100 inactive inactive 0.50 0.50
3 H H 60 active inactive® 0.33 0.67
4 3,4-Me, H >100 inactive inactive 0.33 0.67
5 2-Cl H >100 inactive inactive 0.33 0.67
6 3-Cl H >100 inactive inactive 0.04 0.96
7 4-Cl H >100 inactive inactive 0.03 0.97
8" 3. F H >100 inactive — inactive 0.04 0.96
9°  34-Cl, H >100 inactive - inactive 0.01 0.99
10° 2,4-Cl, H >100 inactive - inactive 0.03 0.97
11 3,5-Cl, H >100 inactive inactive 0.01 0.99
12 34-F, H >100 inactive inactive 0.01 0.99
13 4-F-3-F;C H >100 inactive inactive 0.00 1.00
14 3-CI-4-Me H 88 active active 0.99 0.01
15 4-N(n—Bu); NO, 15 active active 1.00 0.00
16 DHIQ? NO, 5 active active 1.00 0.00
17 H NO, 70 active active 0.52 0.48
18" 34-Me, NO, 12 active — active 0.84 0.16
19 2-C NO, 3 active active 1.00 0.00
20 3-Cl NO, 33 active active 1.00 0.00
21 4 NO, 15 active active 1.00 0.00
22 3,4-Cl, NO, 43 active active 1.00 0.00
23 2,4-Cl, NO, 17 active active 1.00 0.00
24 34-F, NO, 41 active active 1.00 0.00
25 4-F-3-F3C NO, 3 active active 1.00 0.00
26 4-CI-3-F3C NO, 16 active active 1.00 0.00

2 N-decahydroisoquinoline.
b Test Set.
¢ Misclassified Compound.
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Table 2
Dataset: modifications of ethyl-linked and propyl-linked derivatives. Model predictions using CP-ANN.
Cl
R4 R6
cl /\\ s N
27-37 N 38-51 N
CO,H
Id R* R® RS BASSR ICsq Class Threshold Training Data TestData Class Weight Class Weight
(uM) (>100 pM) (Predicted) (Predicted) Active Inactive
27 H 4-COH — >100 inactive inactive 0.00 1.00
28 H 4-CO,Me — >100 inactive inactive 0.00 1.00
29° H 5-CO,H - >100 inactive — active© 0.51 0.49
30 4-F3C 5-CO,H — >100 inactive inactive 0.06 0.94
31 4-F 5-CO,H — >100 inactive inactive 0.09 0.91
32 2-aza® 6-CO,H - 7 active active 1.00 0.00
33 2-Me 6-CO,H — >100 inactive inactive 0.07 0.93
34 3-F5C 6-CO,H — 27 active active 0.88 0.12
35 2-F5C 6-CO,H - >100 inactive inactive 0.12 0.88
36 5-F5C 6-CO,H — 70 active active 0.92 0.08
37 4-EtoN 6-CO,H — >100 inactive inactive 0.08 0.92
38 — — 4-Et;N 3 active inactive® 0.50 0.50
39° - - 4-MeO 30 active - active 0.75 0.25
40° - - H 14 active - active 0.67 0.33
41° - - 4-Me 9 active - active 0.67 033
42 — — 3,4-Me, 6 active active 0.67 0.33
43° - - 3-Br 2 active - active 0.67 0.33
44> - - 2-Cl 6 active - active 0.67 0.33
45> - - 3-Cl 4 active - active 0.67 033
46° - - 4-Cl 3 active - active 0.67 0.33
47° — — 3,4-Cl, 25 active — active 0.51 0.49
48 — — 2,4-Cl, 2 active active 0.67 0.33
a9° - - 3,5-Cl, 3 active - active 0.51 0.49
50° - - 3,4-F, 8 active - active 0.51 0.49
51 — — 4-F, 3-F3C 5 active active 0.81 0.19
¢ Substituted pyridine ring.
b Test Set.
€ Misclassified Compound.
Table 3
Dataset: modifications of propyl-linked derivatives. Model predictions using CP-ANN.
R8
| e
R S
2-62 H
52-
CO,H
Id R’ R® BASSR ICso Class Threshold Training Data Test Data Class Weight Class Weight
(uM) (>100 pM) (Predicted) (Predicted) Active Inactive
522 3,4-Cl, 4-F 86 active — active 0.81 0.19
53 3,4-Cl, 4-0,N >100 inactive active® 0.52 0.48
54 3,4-Cl, 4-Me >100 inactive active® 0.67 0.33
552 3,4-Cl, 2-aza 60 active — active 1.00 0.00
56 3,4-Me, 4-0,N 14 active active 0.92 0.08
57 3,4-Me, 4-F >100 inactive inactive 0.08 0.92
58 3,4-Me; 2-aza 14 active active 1.00 0.00
59° 3,4-Me; 3-F 12 active - inactive® 0.33 0.67
60° 3,4-Me; 4-Me 16 active — active 0.67 0.33
61° 4-MeO 3-F 14 active - active 0.75 0.25
62 4-MeO 4-F 14 active - active 0.75 0.25
@ Test Set.

b Misclassified Compound.
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Table 4
Selected descriptors with Ranker.
Number Descriptor
1 LUMO energy (LUMO)
2 WTPT-4
3 TopoPSA
4 HOMO energy (HOMO)
5 WTPT-5
6 nAtomp
7 MDEO-11

which are included in Weka [37,38]. InfoGainAttributeEval evalu-
ates attributes by measuring their information gain with respect to
the class [39]. It discriminates numeric attributes first using the
Minimum Description Length (MDL)-based discrimination method.
Information Gain then assigns a weight to each feature that is used
for ranking the features. The specific method can treat presence/
absence of a particular term as random variables and computes
how much information about class membership is gained by
knowing the presence/absence statistics. If the class membership is
interpreted as a random variable C with two values, positive and
negative, and a word is likewise seen as a random variable T with
two values, present and absent, then using the information theo-
retic definition of mutual information, Information Gain can be
defined as:

IG(t) =H(C)—H(C/T)
=Y P(C=c,T=0)n[P(C=c,T=1)/P(C=0)P(T=1)] (1)

7.

Ranker, is a ranking scheme for individual attributes. It sorts
attributes by their individual evaluations and is used in conjunction
with one of the single-attribute evaluators (e.g., InfoGainAt-
tributeEval) [37,38]. Furthermore, the selection procedure is very
fast. Ranker not only ranks attributes but also performs attribute
selection by removing the lower-ranking ones.

In order to develop the classification model we have used the
Kohonen and CP-ANN toolbox [26,27] for MATLAB recently intro-
duced by Ballabio et al. The algorithm [28] implemented in the
toolbox is the one described by Zupan et al. Kohonen maps (or Self
Organized Maps, SOMs) represent a two-dimensional grid of con-
nected neurons, which are multi-dimensional vectors with
a dimension equal to the number of descriptors. The learning of
SOM is the projection from multi-dimensional space onto two-
dimensional grid (array) of neurons. Kohonen maps have been used
with success in the development of quantitative structure—activity
relationship models [40—46].

A Kohonen top map is a representation of the space defined by
the neurons where the samples are placed. Samples are randomly
scattered in the space in a way that similar samples are placed on
the same or adjacent neurons and dissimilar samples are placed far
apart from each other. This representation allows the interpretation
of data structure by analyzing sample position and their relation-
ships. Based on the Kohonen top map we can interpret the sample
relationship as well as the variable influence. For each variable
encountered the neurons are colored based on the variable values
and as a result the influence of each variable on the sample and the
relationship between the variable and the sample distribution in the
space is defined [26]. Variable interpretation is often considered as
a difficult task for multi-dimensional data since the Kohonen map
only plots all weights for a specific neuron or all neurons for
a specific weight. For complex data a simple visual approach is
considered insufficient and a method to investigate the variables in
a global way is needed. Principal Component Analysis (PCA) on the
Kohonen weights is considered as a trustable alternative. PCA is

a variable tool that projects the data in a reduced hyperspace
defined by the first significant components [27]. A matrix W that
consists of N rows and J columns, where N is the number of neurons
on each side of the map and J is the number of variables, is produced
so that each element of the matrix represents the weight of a vari-
able in each neuron. PCA on the W matrix produces a loading matrix
(JXF, where F is the number of significant components) and a score
matrix (N*XF). Using the loading and score plots the relationships
between variables and neurons and therefore the relationships
between variables and classes can be evaluated.

Counterpropagation Artificial Neural Networks (CP-ANN)
consists [47] of two layers: the input layer which is a Kohonen
network and an associated output layer containing the values of the
properties to be predicted (Fig. 1). The Counterpropagation neural
network is an extension of Kohonen maps for classification purposes
[28], which in addition to the Kohonen layer, it contains a set of
output layers, called Grosberg layers. The number of Grosberg layers
is equal to the number of classes. As far as the input layer is con-
cerned, training does not differ from SOM, i.e., the input variables
determinate the arrangement of objects. When the arrangement is
set the positions of objects are projected to the output layer where
the weights are modified in such a way that the weights on pro-
jected positions correspond to the output values. In addition, the
weights in the neighborhood are modified. In this way the response
surface is constructed. This part of training is conducted considering
the output values and therefore it is usually referred as the super-
vised part of training of Counterpropagation Artificial Neural
Networks (CP-ANN). The prediction of new compounds is per-
formed in two steps. During the first step the object is located into
the input layer on the neuron with the most similar weights. In the
second step, the position of that neuron is projected to the output
layer, which gives the predicted output value.

Both Kohonen maps and CP-ANNs are increasing their uses
related to different chemical issues and nowadays can be considered

Kohonen Layer

input
X1 -

Xy
—

XL’ 1

output layer

Y §—
y2 46—

output

Fig. 1. Kohonen and Counterpropagation Artificial Neural Networks architecture
(picture taken from www.disat.unimib.it/chm/).
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Table 7
Specificity, Sensitivity, Precision & Accuracy Statistics (SOM + CP-ANN & ]48).

Table 5
Confusion Matrix (Training Set — Cross-Validation 10 fold) SOM + CP-ANN model.
Positive Negative
Predicted Predicted
Positive Observed (Active) 14 8
Negative Observed (Inactive) 5 13

as two important tools in chemometrics. One of the reasons of their
success is their ability to solve both supervised and unsupervised
problems, such as clustering and modeling of both qualitative and
quantitative response. Furthermore, according to Vracko [47] in
comparison to other neural networks Kohonen maps and CP-ANNs
have transparent structure, i.e., the results can be easily interpreted.
An advantage is that one can follow the predictions analyzing
individual descriptor layers in Kohonen maps and recognize the
importance of individual descriptors. The comparison of plots of
a descriptor layer and response surface shows the relationship
between descriptor and the biological activity under study. The
interpretation of results by visualization of Kohonen maps makes
the method very appealing for solving drug discovery problems [26].
More specifically graphical representations of individual layers may
indicate the roles of individual descriptors in the model. When
a new compound is presented to the model it will be located on
a defined position in the Kohonen network. Its mechanism of
activity may be deduced from the mechanisms of neighboring
compounds.

2.5. Validation methods

The validation of the proposed model was assessed by various
validation techniques. In particular the proposed classification
models were fully validated using the following measurements:

TP

Precision = 1= (2)
Sensitivity = TPT+7PFN (3)
Specificity = % (4)
Accuracy = 75— ;[1: i ;:FII\I\I TN %)

where: TP = True Positive, FP = False Positive, TN = True Negative,
FN = False Negative.
Confusion Matrix is also given as shown below:

Positive Negative
Predicted Predicted
Positive Observed (Active) TP FN
Negative Observed (Inactive) FP TN
Table 6
Confusion Matrix (Test Set) SOM + CP-ANN model.
Positive Negative
Predicted Predicted
Positive Observed (Active) 16 1
Negative Observed (Inactive) 2 3

Specificity Sensitivity Precision Accuracy

Cross-Validation SOM + CP-ANN 0.72 0.64 0.74 0.68
Test Set SOM + CP-ANN 0.60 0.94 0.89 0.86
Cross-Validation J48 0.50 0.73 0.64 0.63
Test Set J48 0.80 0.47 0.89 0.55

2.6. Applicability domain

In order for an in silico model to be used for screening new
compounds, its domain of application [48—52] must be defined and
predictions for only those compounds that fall into this domain
may be considered reliable. Similarity measurements were used to
define the domain of applicability of the two models based on the
Euclidean distances among all training compounds and the test
compounds [53]. The distance of a test compound to its nearest
neighbor in the training set was compared to the predefined
applicability domain (APD) threshold. The prediction was consid-
ered unreliable when the distance was higher than APD. APD was
calculated as follows:

APD =<d > +Zo (6)

Calculation of <d> and ¢ was performed as follows: First, the
average of Euclidean distances between all pairs of training
compounds was calculated. Next, the set of distances that were
lower than the average was formulated. <d> and ¢ were finally
calculated as the average and standard deviation of all distances
included in this set. Z was an empirical cutoff value and for this
work, it was chosen equal to 0.5.

3. Results and discussion

The available $-amyloid aggregation inhibition data along with
the corresponding full set of 172 descriptor values were used in the
variable selection procedure. The original dataset of 62 compounds
was split according to the Kennard and Stones [34] algorithm into
training and test set. 40 compounds constituted the training set
whereas 22 compounds were left for external validation purposes.

In order to select the most significant descriptors we applied
InfoGain variable selection and Ranker evaluator (included in
WEKA platform) to the training set of molecules. Among the 172
available descriptors 7 were selected as most important to describe
the f-amyloid aggregation inhibition. The selected descriptors are
the following: LUMO energy (LUMO), WTPT-4, TopoPSA, HOMO
energy (HOMO), WTPT-5, nAtomp, MDEO-11.

The descriptors are also presented in Table 4. The chemical
meaning of the selected descriptors that will help in the interpre-
tation of the results is briefly described as following:

Molecular orbital (MO) surfaces visually represent the various
stable electron distributions of a molecule. According to Frontier
Orbital Theory, the shapes and symmetries of the highest-occupied
and lowest-unoccupied molecular orbitals (HOMO and LUMO) are
crucial in predicting the reactivity of a species and the stereo- and
regio- chemical outcome of a chemical reaction [54,55].

LUMO is a measure of electrophilicity of the molecule. Mole-
cules with low LUMO energy values are more able to accept
electrons than molecules with high LUMO energy values. The
LUMO energy value can be increased (less negative) with the
presence of electron-donating groups (EDG) such us amino, and
alkoxy groups and decreased (more negative) with the presence of
electron-withdrawing groups (EWG) such as halogens, cyano and
nitro groups [54]. On the other hand, molecules with high HOMO
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Table 8
Applicability domain of the SOM+CP-ANN model for the test set.

Compound Distance (APD = 5.55)
1 5.54
8 0.00
9 0.01
10 0.01
18 0.04
29 0.13
39 5.54
40 0.03
41 0.02
43 0.02
44 0.02
45 0.01
46 0.03
47 0.06
49 0.06
50 0.05
52 0.06
55 0.11
59 0.06
60 0.08
61 5.54
62 5.53

(highest-occupied molecular orbital energy) values are able to
donate electron density more easily than molecules with low
HOMO energy values [54] The HOMO energy value can be
increased with the presence of electron-donating groups (EDG)
such us NMe,, NH;, NHEt, and OMe and decreased with the
presence of electron-withdrawing groups (EWG) such as halogens
and cyano and nitro groups.

Topological Polar Surface Area (TopoPSA) is defined as the part
of the surface area of the module associated with nitrogens,
oxygens, sulfurs, and the hydrogens bonded to any of these atoms
[56,57]. Polar Surface Area is a descriptor that correlates well the
passive molecular transport through membranes and allows the
prediction of transport properties of drugs. Molecules with a polar
surface area of greater than 140 A2 are usually believed to be poor at
permeating cell membranes [54,57].

Weighted path descriptors (WTPT) were introduced by Randic.
The scope of these descriptors is to identify a molecule by a single
real number with the aim to obtain highly discriminatory power.
WTPT-4 and WTPT-5 characterize the sum of path lengths start-
ing from oxygens and nitrogens, respectively. Descriptor nAtomp

indicates the number of atoms in the largest  chain of the mo-
lecules [54,56].

Molecular distance-edge (MDE) vector is based on the two most
fundamental structural variables, one for distance between atoms
in the molecular graph and another for edges of the adjacency in
the graph. MDEO-11 calculates the molecular distance-edge
between all primary oxygens [54,56].

The molecular descriptors used in the model encode informa-
tion about the structure, branching, electronic effects, and polarity
of the modules and thus implicitly account for cooperative effects
between functional groups. The proposed model aims to help
researchers design novel chemistry driven molecules with desired
biological activity.

The above mentioned subset of descriptors was used to develop
a predictive model using the Kohonen map and CP-ANN method-
ology. The model parameters were set to 9 for neurons and
100 epochs for 10 — fold cross-validation. The order of instances
was randomized before applying the cross-validation procedure.

The experimental values and the predictions for both training and
test examples are presented in Tables 1—3. The confusion matrix for
the cross-validation method and model predictions on the external
test set are presented in Tables 5 and 6. Validation of the models was
performed using the techniques mentioned in the previous section.
The significance, accuracy and robustness of the models are illus-
trated from the corresponding statistics. In particular, the applica-
tion of the 10 fold cross-validation method produced the following
statistics: precision = 74%, sensitivity = 64%, specificity = 72%.
Accordingly, by applying the model to the external test set, the
following statistical results were obtained: precision = 89%,
sensitivity = 94% and specificity = 60%. These statistical results are
summarized in Table 7.

The applicability domain was defined for all compounds that
constituted the test sets as described in the Materials and Methods
section. Since all validation compounds fell inside the domain of
applicability, all model predictions for the external test set were
considered reliable (Table 8).

The validation of the classification performance using the
measurements described above is very important for the evalua-
tion of the model’s performance. It is also useful to have an insight
into the model which can be achieved by the visualization tools
described below. The visual inspection of the Kohonen map helps in
the analysis and interpretation of the data structure, the existence
of cluster and outliers, the relationship between samples and the
influence of each variable.

Class 1= active, Class 2= inactive

Ordinal numbers of training compounds

Fig. 2. Kohonen top map with normal boundary condition for the training set (Green area = active small molecules, Blue area = inactive small molecules). (a) Class 1 = active, Class
2 = inactive. (b) Ordinal numbers of training compounds. (for interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Class 1= active, Class 2= inactive

Ordinal numbers of training compounds

Fig. 3. Kohonen top map with normal boundary condition. Each sample is labelled on the basis of its class; neurons are colored on the basis of Kohonen weight of variable 1 (LUMO
energy). (a) Class 1 = active, Class 2 = inactive. (b) Ordinal numbers of training compounds. (for interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article).

First a Kohonen top map with normal boundary conditions has
been produced using the toolbox [26] (Fig. 2). The Kohonen top
map has 9 neurons and each sample is labelled on the basis of its
class. Class 1 is assigned to actives and Class 2 is assigned to inac-
tives. As it can be seen from Fig. 2 there is a good discrimination
between different classes.

Moreover, the Kohonen top map in Fig. 3 illustrates neurons that
are colored with a gray scale on the basis of the weight of variable
LUMO energy. Coloring of neurons is characteristic of the variable’s
value. Lighter colors are indicative of low values whereas high
values are represented by darker regions. As shown from the
coloring of the figure variable LUMO energy is highly discriminative
between the two classes.

Fig. 4 shows the analysis of the average weights and standard
deviations for all Kohonen neurons corresponding to Class 1 (actives)
or Class 2 (inactives). Average Class 1 weight values are significantly
higher than Class 2 values for the following descriptors: WTPT-4,
TopoPSA, WTPT-5, nAtomp and MDEO-11, while the opposite
happens for LUMO energy. As far as HOMO energy is concerned, the
average weight values for the two classes almost coincide.

A PCA on Kohonen weights [27] has also been contacted.
According to Ballabio et al., the weights of a Kohonen layer can be
analyzed by means of Principal Component Analysis (PCA), in order
to examine the relationship between variables and classes in
a global way and not by examining one variable each time [27]. The

0.8

0.7 +
0.6+
0.5+

0.4+
+—Active

Weights

0.3
={=Inactive

0.2

0.1

01 LUMO WTPT-4 TopoPSA HOMO WTPT-5 nAtomp MDEO-11

Variables

Fig. 4. Profiles of Kohonen weights (average values and standard deviations as error
bars) for Class 1 (active) and Class 2 (inactive).

Kohonen weights have values in the range of 0—1 and therefore no
scaling is needed and PCA has been performed without data
pretreatment. A data matrix has been created and PCA was calcu-
lated on centered matrix. In Figs. 5 and 6 score and loading plots of
the first two components are presented. These first two compo-
nents explain together 96.86% of the total information. In Fig. 5
each spot corresponds to a neuron of the CP-ANN model.
Neurons assigned to Class 2 are all colored and placed at the bottom
right side corner. Neurons assigned to Class 1 (actives) are mostly
placed at the top left side corner or the lower right side. In the score
plot (Fig. 5), each point represents a neuron of the previous CP-ANN
model. Each neuron is colored with a gray scale on the basis of the
output weight of class 2 (inactive): the larger the value of the
output weight, the higher the probability that the neuron belongs
to class 2 and the darker the color. Thus, it is easy to see that
neurons assigned to class 2 are all clustered and placed at the
bottom right side of the score plot. Then, comparing score and
loading plots, one can evaluate how all the variables characterize

score plot
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Fig. 5. Score plot of the first two principal components (explaining together 96.86% of
the total information). A darker colour indicates a larger value of the output weight
and a higher probability of the neuron belonging to inactive class.
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loading plot
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Fig. 6. Loading plot of the first two principal components (explaining together 96.86%
of the total information). Each variable is labelled with its identification number and
characterize a specific class. Active class: 2 (WTPT-4), 3(TopoPSA), 5(WTPT-5), 6
(nAtomp) and 7(MDEO-11). Inactive class: LUMO (1) and HOMO (4).

this specific class. As shown in Fig. 6, variables LUMO (1) and HOMO
(4) are placed at the bottom left of the loading plot and thus is
directly correlated to the Class 2(inactive). On the contrary loading
such as 2(WTPT-4), 3(TopoPSA), 5(WTPT-5), 6(nAtomp) and 7
(MDEO-11) have positive loadings in the first component and thus
samples of Class 2 will be characterized by small values of these
variables.

To further validate the performance of the method that combines
Kohonen maps and CP-ANNs, we compared it with a popular deci-
sion tree classifier, namely the J48 decision tree [37,38] (included in
Weka). In order to classify a new item, the J48 method first needs to
create a decision tree based on the attribute values of the available
training data and identifies the attributes that discriminates the
various instances most clearly. The specific classifier has the ability
to do simultaneously variable selection and modeling. Among the
172 available descriptors 5 were selected as most important to
describe the (-amyloid aggregation inhibition. The selected
descriptors are the following: LUMO energy, BCUTw-1h (eigenvalue
based descriptor noted for its utility in chemical diversity described
by Pearlma), FPSA-3 (encodes surface area and partial charge
information), ATSc3 (an autocorrelation Moreau-Broto descriptor)

Table 9
Confusion Matrix (Training Set — Cross-Validation 10 fold) J48.
Positive Negative
Predicted Predicted
Positive Observed (Active) 16 6
Negative Observed (Inactive) 9 9
Table 10
Confusion Matrix (Test Set) J48.
Positive Negative
Predicted Predicted
Positive Observed (Active) 8 9
Negative Observed (Inactive) 1 4

and finally TopoPSA (topological polar surface area). It is notable to
mention that LUMO energy and Topological polar surface area
(TopoPSA) have been selected from both algorithms. The produced
decision tree is shown in Fig. 7. The confusion matrix for the cross-
validation method and model predictions on the external test set are
presented in Tables 9 and 10. The J48 decision tree model produced
the following statistics after applying the 10 fold cross-validation
method: precision = 64%, sensitivity = 73%, specificity = 50%. The
respective statistics for validation with the external test set were:
precision = 89%, sensitivity = 47% and specificity = 80%. In order to
directly compare the two methods the statistical results of the J48
training method are also shown in Table 7.

3.1. In silico virtual screening

The proposed method, due to the high predictive ability [58,59]
and simplicity, can be a useful aid to the costly and time-consuming
experiments for the synthesis and the determination of the amyloid
aggregation inhibition of N-phenylanthranilic acids. A virtual
screening procedure [58,60] could be based on the proposed
model. The design of novel active molecules by the insertion,
deletion, or modification of substituents on different sites of the
molecule and at different positions could therefore be guided by
the proposed model.

To demonstrate the usefulness of the CP-ANN model we
subsequently conducted a virtual screen to identify potential new
active targets within the models domain of applicability threshold
(ca.5.55). To guide the selection of virtual molecules the descriptors
used to construct the model were referred to where possible.

<=-1355 >-1.355
]
<= 1599931 > 15.99931
<= 000959 > 0.00959
<= 5257 > 5257
<= 0.037141 > 0.037141

S
Bz

Fig. 7. Graphical representation of the J48 decision tree (Class 1 = active, Class 2 = inactive).
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Table 11
Virtual screening, compounds 1v—9v.

A
P
N ] 0
1v N 2v SN N 3v N N
CO.H CO.H CO,H
(! )
b
N Z N NZN
s &)
4v ” 5v N H 6v ”
CO,H CO,H CO,H
X X
® ®
N 4 oy oo g
NS NS
NN NN N NN
7v CO.H 8v CO,H ov H CoH
Id Activity (Predicted) Class Weight Active Class Weight Inactive Applicability Domain
Distance (APD = 5.55)
1v Active 0.79 0.21 0.41
2v Active 0.79 0.21 0.30
3v Active 1.00 0.00 0.20
av (Active) 1.00 0.00 13.24
5v (Active) 1.00 0.00 1327
6v (Active) 1.00 0.00 13.25
v (Active) 1.00 0.00 13.26
8v (Active) 1.00 0.00 13.26
9v (Active) 1.00 0.00 1325

(Active): Compound predicted active but falls outside the applicability domain.

The primary objective of the in silico screen was to determine
whether the developed in silico model could classify structures that
are not included in the training or test sets, as active or inactive. The
secondary objective was to identify which structural modifications
could be tolerated using the domain of applicability. The ultimate
role of the in silico screen was as a guide to the identification of the
most promising new synthetic targets.

Rather arbitrarily we chose 2-(4-phenethylphenylamino)ben-
zoic acid 3 as a starting point. This compound was known to have
moderate activity (Table 1, ID 3). According to the descriptors used
to construct the model, more negative HOMO-LUMO energies were
preferred for active compounds. As such, we replaced various arene
CH'’s for N’s to give compounds 1v—9v (Table 11).

The model identified all compounds as active, however, only the
predictions on the mono aza analogues 1v—3v fell within the

Table 12
Virtual screening, compounds 10v-12v.

domain of applicability of the model (<5.55). Interestingly, the
location of the N made little noticeable difference to the predicted
activity and domain of applicability values. Increasing the length of
the saturated alkyl spacer for selected aza substituted molecules
improved slightly the outcome for the diaza derivatives, which
remained active but well out of the domain of applicability.
However, for the mono aza substituted analogue the longer propyl
spacer was well tolerated (Table 12). The descriptor nAtomp also
indicated that molecules with extended 7 chains could also show
the desired activity. As such the structure 2-(4-phenethylphenyla-
mino)benzoic acid 3 was modified to provide several new potential
targets 13v—21v (Table 13).

Among these two compounds, 2-(4-phenethylnaphthalen-1-yla-
mino)benzoic acid 17v and 2-(4-phenethylphenylamino)-1-naph-
thoic acid 18v were identified as active and within the domain of

‘ N\ E\‘j/\/\@ ‘ N\ = ‘
N
& N = N = SNTON

10v H CO,H 11v H CO,H 12v H COLH
Id Activity (Predicted) Class Weight Active Class Weight Inactive Applicability Domain
Distance (APD = 5.55)
10v Active 0.79 0.21 0.42
11v (Active) 1.00 0.00 13.24
12v (Active) 1.00 0.00 13.25

(Active): Compound predicted active but falls outside the applicability domain.



506 A. Afantitis et al. / European Journal of Medicinal Chemistry 46 (2011) 497—508

Table 13
Virtual screening, compounds 13v—21v.

CO,H

16

g e
3v N 14v 15v N
" H

Iz

co, CO,H

< o¥e Y o
¥z
v N 17v N 18v N
CO-H CO,H CO,H
L) °
/© 20v N 21v N
H H
COzH CO2H CO2H
Id Activity (Predicted) Class Weight Active Class Weight Inactive Applicability Domain
Distance (APD = 5.55)
13v (Inactive) 0.50 0.50 8.00
14v (Inactive) 0.50 0.50 8.00
15v (Active) 0.92 0.08 10.00
16v Inactive 0.33 0.67 0.02
17v Active 0.75 0.25 2.00
18v Active 0.57 043 4.00
19v (Active) 0.92 0.08 10.00
20v Inactive 0.09 0.91 3.38
21v (Active) 0.57 0.43 5.83

(Active): Compound predicted active but falls outside the applicability domain (Inactive): Compound predicted inactive but falls outside the applicability domain.

applicability (2.00 and 4.00, respectively). While 2-{4-[2-(naph-
thalen-2-yl)ethylJphenylamino}-benzoic acid 16v was clearly iden-
tified as inactive within the domain of applicability (0.02). Alternative
fusions that extended the 7 chain length were also fruitful identifying
a clear inactive molecule 6-phenethyl-9H-carbazole-1-carboxylic
acid 20v and an active 7-phenethyl-10H-phenoxazine-1-carboxylic

Table 14
Virtual screening, compounds 22v—27v.

Iz

acid 21v, that fell marginally out of the domain of applicability (5.83).
An attempt to bring the active prediction of compound 15v within the
domain of applicability by introducing an arene CH by N to give
compound 19v that should have more negative HOMO/LUMO values
failed to provide an active molecule within the domain of applicability
(Table 13).

e Lo Feclosnheve
COH 23v H 24y N

COH COH

® ®
N
OhAdwe s 9wl hdwe
N N
25v 26v H 27v H

N
H
CO,H CO,H CO,H
Id Activity (Predicted) Class Weight Active Class Weight Inactive Applicability Domain
Distance (APD = 5.55)

22v Active 0.57 0.43 4.00
23v Active 0.57 043 4.00
24v Inactive 0.33 0.67 0.02
25v Inactive 0.09 0.91 3.38
26v Active 0.53 0.47 342
27v Active 1.00 0.00 3.76
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Table 15
Virtual screening, compounds 28v—33v.

o,

@xn

N
28v (X = 0) 31v (X = 0) H
" = \% =
HO™ ~O HO™ O

29v (X = NH) 32v (X =NH)

30v(X=S) 33v (X = S)
Id Activity (Predicted) Class Weight Active Class Weight Inactive Applicability Domain

Distance (APD = 5.55)

28v (Active) 0.75 0.25 5.69
29v Active 0.51 0.49 093
30v (Active) 0.67 0.33 12.79
31v (Active) 0.75 0.25 5.69
32v Active 1.00 0.00 0.90
33v (Active) 0.67 033 12.79

(Active): Compound predicted active but falls outside the applicability domain.

Similarly, switching from an ethyl to propyl linker made little
difference to the predicted activities (Table 14). Nevertheless, by
modifying the carbazole side chain the predicted activity could be
switched from inactive to active within the domain of applicability.
Introduction of pyridyl or trifluoromethylphenyl substituents was
favourable, while increasing the length of the saturated linker was
not (Table 14).

We then examined the effect of introducing heteroatom spacers
in the saturated alkyl spacer. Oxygen, nitrogen and sulfur units
were introduced into both propyl and butyl chains to give mole-
cules 28v—33v (Table 15). While all of the molecules were active
only the nitrogen derivatives 29v and 32v were within the models
domain of applicability.

By combining the heteroalkyl linkage with extended 7t-systems
such as the naphthenes we were able to investigate the effects
further. We focused here on the virtual molecule 24v that had been
predicted to be inactive and clearly within the model’s domain of

Table 16
Virtual screening, compounds 34v—39v.

applicability. Our intension was to investigate the effects of minor
modifications such as exchange of arene CH’s for N, alkyl CH for N,
and direct arene substitution (Table 16).

The simple replacement of an aryl or alkyl CH by N switched the
activity providing active molecule 34v and 36v, respectively both
within the domain of applicability. The introduction of a tri-
fluoromethyl substituent on the naphthyl portion to give molecule
35v led to an inactive prediction again within the domain, however,
combining the introduction of a similar trifluoromethyl or even
a fluoro group with the exchange of an alkyl CH for N led to active
compounds 37v and 38v both within the model’s domain of
application.

It can be observed that the model acts to identify molecules
predicted to be either active or inactive that could not be readily
differentiated based on simple intuition. The domain of applica-
bility provides a level of confidence that can be used to prioritise
the selection of targets to be synthesized.

/N N
A ‘ H
N FiC N N
34v H 35v H 36v H

CO,H

CO,H COH

N N N
F N FsC N OoN N
37v H 38v H 39v H

COLH

COH CO,H

Id Activity (Predicted) Class Weight Active Class Weight Inactive Applicability Domain
Distance (APD = 5.55)
34v Active 0.79 0.21 0.35
35v Inactive 0.00 1.00 0.07
36v Active 0.51 0.49 0.92
37v Active 1.00 0.00 0.89
38v Active 1.00 0.00 0.87
39v (Active) 0.55 045 7.38

(Active): Compound predicted active but falls outside the applicability domain.
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4. Conclusions

A classification model for the prediction of §-amyloid aggrega-
tion of N-phenyl-anthranilic acid inhibitors was developed. After
the calculation of a large number of descriptors, we selected the
most significant for each compound that fully describe the char-
acteristics responsible for the inhibition activity under study. Based
on this dataset, we used Kohonen maps and CP-ANN methodology
which resulted in the development of an accurate and reliable
model that was fully validated using various cross-validation and
external test prediction techniques. The results were interpreted
based on the physical meaning of descriptors and by visualization
of Kohonen maps. The method [61—63] can also be used to screen
existing databases [64—66] or virtual combinations to identify
derivatives with desired activity. In this scenario, the classification
model will be used to screen out inactive compounds, while the
applicability domain will serve as a valuable tool to filter out
“dissimilar” combinations. An attempt in this direction was carried
out. Synthesis of the proposed chemistry driven small molecules
using the aforementioned virtual screening procedure and exper-
imental evaluation of their biological activity will show if the
method can be used as a general rational drug discovery tool.
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