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Abstract

In this work, a linear quantitative structure–property relationship (QSPR) model is presented for the prediction of intrinsic viscosity in polymer

solutions. The model was produced by using the multiple linear regression (MLR) technique on a database that consists of 65 polymer–solvent

combinations involving 10 different polymer. Among the 30 different physicochemical, topological and structural descriptors that were

considered as inputs to the model, only eight variables (four variables for the polymer and four descriptors for the solvent) were selected using the

elimination selection stepwise regression method (ES-SWR). The physical meaning of each descriptor is discussed in details. The accuracy of the

proposed MLR model is illustrated using various evaluation techniques: leave-one-out cross validation procedure, validation through an external

test set and Y-randomization. Furthermore, the calculation of the domain of applicability defines the area of reliable predictions.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The design of new materials with optimal thermo physical,

mechanical and optical properties is a challenge for compu-

tational chemistry. Novel materials are typically developed

using a trial and error approach, which is costly and time-

consuming [1]. An alternative strategy is to model the material

properties as functions of the molecular structure using the so

called quantitative structure–property relationships (QSPR)

[2,3]. Application of QSPR methodologies in material design

has the potential to decrease considerably the time and effort

required to improve material properties in terms of their

efficacy or to discover new materials with desired properties.

The conformational properties of polymer chains are

usually determined in dilute solutions of the polymers.

Viscosity, light scattering, small-angle X-ray scattering, and
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osmotic pressure, are the main types of measurement

performed in solutions. According to Biceraco, conformation-

al properties play a key role in determining the properties of

polymer solutions, and therefore, in both synthesis (i.e.

polymerization in solution) and processing (i.e. solvent

casting of thin films) [4].

In particular, intrinsic viscosity (h) of polymer solutions,

which we will investigate in the present work, is a measure of

the volume associated with a given mass of polymer in a dilute,

undisturbed solution at thermodynamic equilibrium [5].

Van Krevelen examined various equations for solution

viscosity and recommended the following empirical equation

(Eq. (1)) to estimate intrinsic viscosity when experimental

measurements are not obtained under Q conditions:

hz0:99328
K

M

� �2 expð8:5a10:3ÞMa
v

MðaK0:5Þ
cr

(1)

In the above equation Mcr is the critical molecular weight,

Mv (MvZ2.5!105) is the viscosity average molecular weight,

K is the molar stiffness function, M is the molecular weight per

repeat unit, and the parameter a is defined by Eq. (2) that
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Table 1

Physicochemical constants, topological and structural descriptors

Id Description Notation

1 Molar refractivity MR

2 Diameter Diam

3 Partition coefficient (octanol water) ClogP

4 Molecular topological index TIndx

5 Principal moment of inertia Z PMIZ

6 Number of rotatable bonds NRBo

7 Principal moment of inertia Y PMIY

8 Polar surface area PSAr

9 Principal moment of inertia X PMIX
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follows next:

az0:8K0:1 absðdsolventKdpolymerÞ for absðdsolventKdpolymerÞ%3

az0:5 for absðdsolventKdpolymerÞO3

(2)
where the solubility parameters (d) are in

ffiffiffiffiffiffiffiffiffi
J=cc

p

Using Eq. (1) van Krevelen [4] calculated the intrinsic

viscosity for 65 polymer–solvent combinations with a correlation

coefficient R2Z0.324. The experimental values of the intrinsic

viscosity are plotted against the values calculated by Eq. (1) in

Fig. 1. After the rejection of seven solvents, which differ

significantly from the polymer in hydrogen bonding capability, a

better correlation coefficient (R2Z0.483) was obtained. The

proposed equation works reasonably well unless the polymer has

a tendency to be highly crystalline in the bulk. These last

observations were also reported by Bicerano as weak points [4].

The limitations of empirical equations can be avoided with

the use of QSPR approach. The physicochemical constants,

quantum, topological and structural descriptors used in QSPR

encode information about the structure of the module and thus

implicitly account for cooperative effects between functional

groups, charge redistribution and possible hydrogen bonding in

the polymer [6,7]. The QSPR approach has been applied

successfully to modeling many polymeric properties, such as

glass transition temperature [2,8,9], refractive index [3,9,10]

and solubility parameters [6].

In this work, we utilized the same series of 65 polymers–

solvent combinations which involve 10 different polymers in

order to determine the physicochemical and topological

descriptors that correlate well with and can predict successfully

the intrinsic viscosities in polymer solutions (in units of cm3/g)

[4]. The QSPR models were obtained by multiple linear

regression (MLR). Thirty physicochemical and topological

descriptors were calculated for each polymer and solvent using

ChemSar which is included in the ChemOffice (CambridgeSoft

Corporation) suite of programs [11]. Among them, the most

statistically significant descriptors were selected, using the

elimination selection stepwise regression (ES-SWR) variable

selection method. The result of this study was the development
Fig. 1. Experimental versus calculated intrinsic viscosity using Eq. (1).
of a new linear QSPR model containing eight variables. The

proposed methodology was validated using several strategies:

cross validation, Y-randomization and external validation using

division of the available data set into training and test sets.

Furthermore, the calculation of the domain of applicability

defines the area of reliable predictions.

2. Materials and methods

2.1. Data set

For this QSPR study 65 polymer–solvent combinations

together with their intrinsic viscosity were collected from

Bicerano [4]. In order to model and predict this specific

conformational property (intrinsic viscosity), 30 physicochem-

ical, topological and structural descriptors for each polymer

and solvent were considered as possible input candidates to the

model (Table 1). All the descriptors were calculated using

ChemSar (CambridgeSoft Corporation). The molecular

descriptors were calculated from the structure of the monomer

compound used in the polymerization.

2.2. Stepwise multiple regression

As mentioned in the introduction, the ES-SWR algorithm

[12] was used to select the most appropriate descriptors. ES-

SWR is a popular stepwise technique that combines forward
10 Radius Rad

11 Connolly accessible area SAS

12 Shape attribute ShpA

13 Connolly molecular area MS

14 Shape coefficient ShpC

15 Total energy TotE

16 Sum of valence degrees SVDe

17 Lumo energy LUMO

18 Total connectivity TCon

19 Humo energy HUMO

20 Total valence connectivity TVCon

21 Balaban index BIndx

22 Wiener index WIndx

23 Dipole length DPLL

24 Electronic energy ElcE

25 Repulsion energy NRE

26 Connolly solvent-excluded volume SEV

27 Ovality Ovality

28 Cluster count ClsC

29 Sum of degrees SDeg

30 Molecular weight MW
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selection (FS-SWR) and backward elimination (BE-SWR). It is

essentially a forward selection approach, but at each step it

considers the possibility of deleting a variable as in the

backward elimination approach, provided that the number of

model variables is greater than two. The two basic elements of

the ES-SWR method are described below in more details.

2.2.1. Forward selection

The variable considered for inclusion at any step is the one

yielding the largest single degree of freedom F-ratio among the

variables that are eligible for inclusion. The variable is

included only if the corresponding F-ratio is larger than a

fixed value Fin. Consequently, at each step, the jth variable is

added to a k-size model if

Fj Zmaxj

RSSkKRSSkCj

s2
kCj

 !
OFin (3)

In the above inequality RSS is the residual sum of squares

and s is the mean square error. The subscript kCj refers to

quantities computed when the jth variable is added to the k

variables that are already included in the model.

2.2.2. Backward elimination

The variable considered for elimination at any step is the

one yielding the minimum single degree of freedom F-ratio

among the variables that are included in the model. The

variable is eliminated only if the corresponding F-ratio does

not exceed a specified value Fout. Consequently, at each step,

the jth variable is eliminated from the k-size model if

Fj Zminj

RSSkKjKRSSk

s2
k

� �
!Fout (4)

The subscript kKj refers to quantities computed when the

jth variable is eliminated from the k variables that have been

included in the model so far.

2.3. Kennard and Stones algorithm

The Kennard and Stones algorithm [13] has gained an

increasing popularity for splitting data sets into two subsets.

The algorithm starts by finding two samples that are the farthest

apart from each other on the basis of the input variables in

terms of some metric, e.g. the Euclidean distance. These two

samples are removed from the original data set and put into the

calibration data set. This procedure is repeated until the desired

number of samples has been reached in the calibration set. The

advantages of this algorithm are that the calibration samples

map the measured region of the input variable space

completely with respect to the induced metric and that the

test samples all fall inside the measured region. According to

Tropsha [14] and Wu [15], Kennard and Stones algorithm is

one of the best ways to build training and test sets.

2.4. Cross-validation technique

The reliability of the proposed method was explored using

the cross-validation method. Based on this technique, a number
of modified data sets are created by deleting in each case one or

a small group (leave-some-out) of objects [16–18]. For each

data set, an input–output model is developed, based on the

utilized modelling technique. Each model is evaluated, by

measuring its accuracy in predicting the responses of the

remaining data (the ones that have not been utilized in the

development of the model). In particular, the leave-one-out

(LOO) procedure was utilized in this study, which produces a

number of models, by deleting each time one object from the

training set. Obviously, the number of models produced by the

LOO procedure is equal to the number of available examples n.

Prediction error sum of squares (PRESS) is a standard index to

measure the accuracy of a modelling method based on the

cross-validation technique. Based on the PRESS and SSY (sum

of squares of deviations of the experimental values from their

mean) statistics, the Q2 and SPRESS values can be easily

calculated. The formulae used to calculate all the aforemen-

tioned statistics are presented below (Eqs. (5) and (6)):

Q2 Z 1K
PRESS

SSY
Z 1K

Pn
iZ1

ðyexpKypredÞ
2

Pn
iZ1

ðyexpK �yÞ2
(5)

SPRESS Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
(6)

For a more exhaustive testing of the predictive power of the

model, except from the classical LOO cross-validation

technique, validation of the model was carried out by a leave-

five-out (L5O) cross validation procedure. From the training set

we randomly selected groups of five compounds. Each group

was left out and that group was predicted by the model

developed from the remaining observations. This procedure was

carried out several times, as will be shown in the sequel.
2.5. Y-randomization test

This technique ensures the robustness of a QSPR model

[14,19]. The dependent variable vector (intrinsic viscosity) is

randomly shuffled and a new QSPR model is developed using

the original independent variable matrix. The new QSPR

models (after several repetitions) are expected to have low R2

and Q2 values. If the opposite happens then an acceptable

QSPR model cannot be obtained for the specific modeling

method and data.
2.6. Estimation of the predictive ability of a QSPR model

According to Tropsha [14] the predictive power of a

QSAR model can be conveniently estimated by an external

R2
cv;ext (Eq. (7)).

R2
cv;ext Z 1K

Ptest

iZ1

ðyexpKypredÞ
2

Ptest

iZ1

ðyexpK �ytrÞ
2

(7)
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where �ytr is the averaged value for the dependent variable for

the training set.

Furthermore, the same group [14,20] considered a QSAR

model predictive, if the following conditions are satisfied:

R2
cv;extO0:5 (8)

R2O0:6 (9)

ðR2KR2
oÞ

R2
!0:1 or

ðR2KR02
o Þ

R2
!0:1 (10)

0:85%k%1:15 or 0:85%k 0%1:15 (11)

Mathematical definitions of R2
o, R02

o , k and k 0 are based on

regression of the observed activities against predicted activities

and vice versa (regression of the predicted activities against

observed activities). The definitions are presented clearly in

Golbraikh et al. [20] and are not repeated here for brevity.
2.7. Defining model applicability domain

The domain of application [14,21] of a QSPR model must

be defined if the model is to be used for predicting properties of

new combinations (polymer–solvent). Predictions for only

those combinations that fall into this domain may be

considered reliable. Extent of extrapolation [14] is one simple

approach to define the applicability of the domain. It is based

on the calculation of the leverage hi [22] for each chemical,

where the QSPR model is used to predict its property:

hi Z xT
i ðX

TXÞxi (12)

In Eq. (12) xi is the descriptor-row vector of the query

compound and X is the k!n matrix containing the k descriptor

values for each one of the n training compounds. A leverage

value greater than 3k/n is considered large. It means that the

predicted response is the result of a substantial extrapolation of

the model and may not be reliable.
3. Results and discussion

For the selection of the most important descriptors, the

aforementioned stepwise multiple regression technique was

used. The procedure was automated by running a software

package developed in our laboratory, which realizes the
Table 2

Correlation matrix of the eight selected descriptors

HOMO(S) LUMO(S) TIndx(S) PMIX(

HOMO(S) 1

LUMO(S) K0.040 1

TIndx (S) 0.439 0.235 1

PMIX (S) K0.281 K0.276 0.203 1

DPLL (P) K0.052 K0.141 K0.367 K0.12

MS (P) K0.119 K0.133 K0.126 K0.10

LUMO(P) 0.049 0.046 K0.184 0.09

MW (P) K0.099 K0.183 0.090 K0.07
ES-SWR algorithm. The software was programmed in the

Matlab programming language.

The descriptors that were selected using the ES-SWR

algorithm were the following: HOMO, LUMO energies,

principal moment of inertia X (PMIX) and molecular

topological index (TIndx) for the solvents and dipole length

(DPLL), molecular weight (MW), LUMO energy and

Connolly molecular surface area (MS) for the polymers.

Table 2 presents the correlation matrix, where it is clear that the

eight selected descriptors are not highly correlated.

All the structures before the calculation of the descriptors

were fully optimized using CS Mechanics and more

specifically MM2 force fields and truncated-Newton–Raphson

optimizer, which provide a balance between speed and

accuracy [11].

A brief explanation of the descriptors that were selected

follows next.

Molecular orbital (MO) surfaces visually represent the

various stable electron distributions of a molecule. According

to Frontier orbital theory, the shapes and symmetries of the

highest-occupied and lowest-unoccupied molecular orbitals

(HOMO and LUMO) are crucial in predicting the reactivity of

a species and the stereochemical and regiochemical outcome of

a chemical reaction [11]. Before calculating the HOMO and

LUMO energies (eV) all the structures were additionally fully

optimized using the AM1 basis set.

Molecular topological index (TIndx) [12] is derived from

the adjacency matrix A, the distance matrix D and the

A-dimensional column vector v, constituted by the vertex

degree d of the A atoms in the H-depleted molecular graph.

The TIndx (also called Schultz index) is defined as:

TIndx Z
XA

iZ1

½ðACDÞv�i Z
XA

iZ1

ti (13)

where ti are intricacy numbers of the A-dimensional column.

Intricacy numbers measure the combined influence of valence,

adjacency and distance for each comparable set of vertices; the

lower the intricacy number, the more intricate or complex the

vertex [12].

The principal moments of inertia (PMI) (g/mol Å2) are

physical quantities related to the rotational dynamics of a

module [12]. The PMIs are defined by the diagonal elements of

the inertia tensor matrix when the Cartesian coordinate axes are

the principal axes of the module, with the origin located at the

center of mass of the module. In this case the off-diagonal
S) DPLL(P) MS(P) LUMO(P) MW(P)

3 1

5 0.353 1

6 0.303 K0.017 1

4 K0.223 K0.043 K0.717 1



Table 3

Calculated values for the 65 polymer–solvent combinations

Id Polymer Solvent h (exp) h (calc) R2Z0.324

RMSZ86.08

(Ref. [4]) (Fig. 1)

h (calc) R2Z0.774

RMSZ38.00

(Eq. (14)) (Fig. 2)

Leverages

(limit 0.4154)

1 Polypropylene Cyclohexane 295 309 207.32 0.1602

2 Toluene 182 151 181.90 0.1276

3 Benzene 160 120 141.22 0.2949

4 Polyisobutylene Cyclohexane 209 186 113.11 0.2301

5 Carbon tetrachloride 135 95 51.52 0.1651

6 Toluene 87 74 63.25 0.1525

7 Benzene 59 63 40.53 0.4063

8 Polystyrene Cyclohexane 42 49 87.69 0.1330

9 n-Butyl chloride 55 74 84.88 0.1137

10 Ethylbenzene 83 81 72.64 0.1891

11 Decalin 44 83 80.56 0.1297

12 Toluene 104 129 73.87 0.1100

13 Benzene 114 132 67.58 0.1212

14 Chloroform 94 182 73.04 0.0628

15 Butanone 52 195 89.54 0.0458

16 Chorobenzene 81 120 94.37 0.0295

17 Dioxane 85 79 106.97 0.0465

18 Poly(vinyl acetate) Methyl isobutyl ketone 78 46 39.54 0.2164

19 Toluene 78 62 120.42 0.1506

20 3-Heptanone 44 72 108.01 0.1136

21 Benzene 94 76 163.50 0.2978

22 Chloroform 158 91 155.68 0.1133

23 Butanone 82 93 143.44 0.1633

24 Ethyl formate 102 145 144.67 0.1101

25 Chlorobenzene 98 166 157.26 0.1165

26 Dioxane 115 87 192.97 0.1347

27 Acetone 94 85 170.71 0.1844

28 Acetonitrile 101 36 50.57 0.0696

29 Methanol 61 36 89.74 0.1107

30 Poly(propylene oxide) Toluene 145 166 37.47 0.1531

31 Benzene 162 316 45.08 0.0692

32 Poly(ethylene oxide) Cyclohexane 186 89 86.93 0.0713

33 Carbon tetrachloride 135 145 74.69 0.1046

34 Benzene 120 269 80.09 0.0619

35 Chloroform 102 363 69.72 0.0680

36 Dioxane 127 219 106.27 0.2731

37 Acetone 78 214 43.51 0.0919

38 Dimethyl formamide 209 78 52.39 0.0982

39 Methanol 257 78 347.79 0.2637

40 Poly(methyl methacrylate) Butyl chloride 25 35 280.15 0.3131

41 Methyl isoburyrate 42 36 124.91 0.2644

42 Methyl methacrylate 52 44 111.15 0.1364

43 Toluene 101 52 74.52 0.2169

44 Heptanone 27 60 139.11 0.0996

45 Ethyl acetate 60 65 136.31 0.0785

46 Benzene 70 68 179.09 0.1117

47 Chloroform 124 93 161.62 0.1618

48 Butanone 49 98 136.21 0.1001

49 Dichloroethane 60 65 133.40 0.0770

50 Tetrachloroethane 112 47 78.10 0.1275

51 Acetone 48 43 83.66 0.0412

52 Nitroethane 58 27 108.20 0.0755

53 Acetonitrile 26 27 105.40 0.0389

54 Polyacrylonitrile Dimethyl acetamide 398 129 93.15 0.0806

55 Dimethyl formamide 343 479 98.56 0.0349

56 Dimethyl sulfoxide 363 437 110.81 0.1564

57 Butyrolactone 248 129 183.91 0.1910

58 Polybutadiene Cyclohexane 126 257 53.57 0.0740

59 Isobutyl acetate 93 372 56.03 0.0644

60 Toluene 211 269 88.51 0.0766

61 Benzene 184 204 348.29 0.2637
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Table 3 (continued)

Id Polymer Solvent h (exp) h (calc) R2Z0.324

RMSZ86.08

(Ref. [4]) (Fig. 1)

h (calc) R2Z0.774

RMSZ38.00

(Eq. (14)) (Fig. 2)

Leverages

(limit 0.4154)

62 Polyisoprene Hexane 91 72 344.73 0.2505

63 Isooctane 110 110 223.66 0.1931

64 Toluene 184 174 198.24 0.1400

65 Benzene 186 135 136.31 0.0785

Fig. 2. Experimental versus calculated intrinsic viscosity using Eq. (14).
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elements of the inertia tensor matrix are zero and the three

diagonal elements, Ixx, Iyy, and Izz correspond to the moments of

inertia about the X-, Y-, and Z-axis of the module. The ES-SWR

algorithm identifies PMIX for the solvent as a significant

descriptor for the modeling of intrinsic viscosity.

Dipole length (DPLL) is the electric dipole moment divided

by the elementary charge. Electric dipole is a vector quantity,

which encodes displacement with respect to the centre of

gravity of positive and negative charges in a molecule [12].

The calculation of molecular surface area was made using

Connolly’s [23] method. Connolly molecular surface area (Å2)

is defined as the contact surface created when a spherical probe

sphere (representing the solvent) is rolled over the molecular

model. Molecular surface is a very important parameter of the

molecules in understanding the structure and chemical

behavior such as their ability to bind ligands and other

molecules [12].

In order to investigate the possibility of having included

outliers in our data set, the extent of the extrapolation method

was applied to the 65 combinations that constitute the entire

data set (Table 3). The leverages for all 65 compounds were

computed (Table 3) and found to be inside the domain of the

model (warning leverage limit 0.4154).

In the sequel we present the linear model, which was

generated, with the eight most significant descriptors. The full

linear equation for the prediction of the intrinsic viscosity (h) is

the following:

hZ 758C34:2 HOMOðSÞC14:6 LUMOðSÞ

K0:167 TIndxðSÞC0:388 PMIXðSÞ

C27:9 DPLLðPÞK0:364 MSðPÞK57:3 LUMOðPÞ

K3:18 MWðPÞ (14)

RMS Z 38:00 R2 Z 0:774 F Z 23:96 Q2 Z 0:684

SPress Z 44:95 n Z 65

Table 3 presents the experimental values of the intrinsic

viscosity as well as the predictions using Eq. (1) and the newly

proposed QSPR (Eq. (14)) for all the polymer–solvent

combinations that constitute our data base. The experimental

values of the intrinsic viscosity are also plotted against the

values calculated by Eq. (14) in Fig. 2.

Molecules with high HOMO (highest occupied molecular

orbital energy) values can donate their electrons more easily

compared to molecules with low HOMO energy values, and
hence are more reactive. Molecules with low LUMO (lowest

unoccupied molecular orbital energy) values are more able to

accept electrons than molecules with high LUMO energy

values.

According to the above QSPR equation high HOMO and

LUMO values for the solvent increase the intrinsic viscosity,

however, the HOMO and LUMO coefficients are not equal.

The larger HOMO coefficient indicates that the electron

donating capability of the solvent molecule is more important

than its electron accepting ability. Therefore, a solvent with the

ability to donate electrons easily and accept electrons with

difficulty should be used in order to increase the intrinsic

viscosity. Similarly the intrinsic viscosity is increased when the

monomer LUMO becomes increasingly negative. This corre-

lates well with the high HOMO values predicted for the solvent

molecules and supports the importance for strong interactions

between solvent and polymer if a high intrinsic viscosity is

desired.

Molecular topological index (TIndx) reduces the intrinsic

viscosity due to a negative contribution to the QSPR equation.

TIndx encodes solvent’s information. The lower the TIndx

value, the more intricate or complex is the molecule.

Principal moment of inertia along x- for the solvents gives

information about how the product of mass and distance

influence the value of intrinsic viscosity.

There is a strong relationship between polymers molecular

weight and intrinsic viscosity [5]. The proposed QSPR model

shows that as the monomer weight increases the intrinsic



Table 4

Experimental and predicted values for the training and test set

Id Polymer Solvent h (exp) h (train) R2Z0.759

RMSZ34.67

h (pred) R2Z0.751

RMSZ49.39

1 Polypropylene Cyclohexane 295 228.2150

2 Toluene 182 204.4388

3a Benzene 160 201.94

4a Polyisobutylene Cyclohexane 209 181.95

5 Carbon tetrachloride 135 149.7865

6a Toluene 87 158.19

7a Benzene 59 155.68

8 Polystyrene Cyclohexane 42 118.3358

9 n-Butyl chloride 55 58.2615

10 Ethylbenzene 83 66.0278

11 Decalin 44 29.5918

12 Toluene 104 94.5672

13 Benzene 114 92.0645

14 Chloroform 94 73.7267

15a Butanone 52 86.67

16 Chorobenzene 81 87.1142

17 Dioxane 85 77.7324

18a Poly(vinyl acetate) Methyl isobutyl ketone 78 83.66

19a Toluene 78 112.68

20 3-Heptanone 44 61.8575

21a Benzene 94 110.18

22a Chloroform 158 91.84

23a Butanone 82 104.78

24 Ethyl formate 102 78.5520

25 Chlorobenzene 98 92.7184

26 Dioxane 115 95.8449

27 Acetone 94 114.5729

28 Acetonitrile 101 41.7999

29 Methanol 61 131.2033

30a Poly(propylene oxide) Toluene 145 108.50

31 Benzene 162 105.9932

32a Poly(ethylene oxide) Cyclohexane 186 178.68

33 Carbon tetrachloride 135 146.5188

34 Benzene 120 152.4093

35 Chloroform 102 134.0711

36 Dioxane 127 138.0772

37 Acetone 78 156.8052

38 Dimethyl formamide 209 195.3810

39 Methanol 257 173.4310

40a Poly(methyl methacrylate) Butyl chloride 25 57.82

41 Methyl isoburyrate 42 48.4912

42a Methyl methacrylate 52 56.03

43 Toluene 101 94.1243

44 Heptanone 27 31.0454

45 Ethyl acetate 60 46.1533

46 Benzene 70 91.6215

47 Chloroform 124 73.2834

48 Butanone 49 86.2296

49 Dichloroethane 60 72.6592

50 Tetrachloroethane 112 99.2702

51a Acetone 48 96.02

52 Nitroethane 58 46.4997

53 Acetonitrile 26 59.2484

54a Polyacrylonitrile Dimethyl acetamide 398 332.34

55a Dimethyl formamide 343 331.85

56 Dimethyl sulfoxide 363 335.4329

57 Butyrolactone 248 259.0258

58a Polybutadiene Cyclohexane 126 245.92

59 Isobutyl acetate 93 137.5930

60a Toluene 211 222.15

61a Benzene 184 159.99
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Table 4 (continued)

Id Polymer Solvent h (exp) h (train) R2Z0.759

RMSZ34.67

h (pred) R2Z0.751

RMSZ49.39

62 Polyisoprene Hexane 91 133.0560

63 Isooctane 110 87.6832

64 Toluene 184 162.4940

65 Benzene 186 159.9911

a The test set.

Table 5

R2 and Q2 values after several Y-randomization tests

Iteration R2 Q2

1 0.15 0.00

2 0.16 0.00

3 0.05 0.00

4 0.32 0.10

5 0.08 0.00

6 0.28 0.00

7 0.19 0.00

8 0.09 0.00

9 0.11 0.00

10 0.29 0.09
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viscosity is reduced. This is expected since in order to maintain

the viscosity average molecular weight Mv of 2.5!105 higher

molecular weight monomers must give polymers with shorter

chain lengths and thus lower intrinsic viscosities.

Molecular surface area (MS) encodes information for the

polymers and explains their chemical behavior with other

modules; high MS values reduce the viscosity.

The proposed QSPR model showed that solution intrinsic

viscosity depends on polymer (MW) and solvent molecular

weight (PMIX), polymer (MS) and solvent structure (PMIX,

TIndx), the kind of interactions between polymer (MS, DPLL,)

and solvents (PMIX) and finally the electronic behavior of

polymer (DPLL, LUMO) and solvent (HOMO, LUMO)

molecules.

The prediction ability of the selected descriptors was further

explored using the data set of 65 polymer–solvent combi-

nations which was divided into a training set of 45

combinations and a validation set of 20 combinations. The

selection of the combinations in the training set was made

according to the Kennard and Stones algorithm.

The combinations that constituted the training and

validation sets are clearly presented in Table 4. The validation

examples are marked with ‘a’. The rest of the study will be

concentrated on the model, which is constructed from the

training set and will examine the predictive ability of the

produced model. Using the same eight descriptors that were

selected by the ES-SWR method, we developed a new MLR

equation based on only the 45 training examples:

hZ 824C38:4 HOMOðSÞC15:6 LUMOðSÞ

K0:188 TIndxðSÞC0:355 PMIXðSÞ

C15:0 DPLLðPÞK0:231 MSðPÞK56:2 LUMOðPÞ

K3:26 MWðPÞ (15)

RMS Z 34:67 R2 Z 0:759 F Z 14:15 Q2 Z 0:601

SPress Z 45:47 n Z 45

This equation was used to predict the intrinsic viscosity (h)

(in units of cm3/g) for the validation examples. The results are

presented in the last column of Table 4 along with the

respective R2
pred statistic. The results illustrated once more that

the linear MLR technique combined with a successful variable

selection procedure is adequate to generate an efficient QSPR

model for predicting the intrinsic viscosity (h) of different

polymer–solvent combinations.
The proposed model (Eq. (15)) passed all the tests for the

predictive ability (Eqs. (8)–(11))

R2
cv;ext Z 0:749O0:5

R2 Z 0:759O0:6

ðR2KR2
oÞ

R2
Z�0:662!0:1 or

ðR2KR02
o Þ

R2
ZK0:731!0:1

k Z 0:9340 and k 0 Z 0:9834

It was important that the model was quite stable to the

inclusion–exclusion of compound as measured by LOO and

L5O correlation coefficients values, which are presented

below:

Q2 Z 0:601

R2
cv L5O Z 0:582

Calculation of the R2
cv;L5O statistic was based on 1000

random selections of groups of five examples among the 45

training observations. Each group was left out and that group

was predicted by the model developed from the remaining

observations.

The model was further validated by applying the Y-ran-

domization. Several random shuffles of the Y vector were

performed and the results are shown in Table 5. The low R2 and

Q2 values show that the good results in our original model are

not due to a chance correlation or structural dependency of the

training set.

It needs to be emphasized that no matter how robust,

significant and validated a QSPR model may be, it cannot be

expected to reliably predict the modeled property for the entire

universe of chemicals. The extrapolation method was applied



Table 6

Leverages for the test set

Combination Id Leverages

3 0.2092

4 0.2855

6 0.1950

7 0.1532

15 0.1522

18 0.0568

19 0.1161

21 0.0607

22 0.0936

23 0.0492

30 0.2367

32 0.3058

40 0.0943

42 0.0911

51 0.1035

54 0.5874

55 0.5528

58 0.3767

60 0.2779

61 0.1579
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to the compounds that constitute the test set. The leverages for

all 20 compounds were computed (Table 6). Not one of the 20

compounds fell outside from the domain of the model (warning

leverage limit 0.60).

The proposed method, due to the high predictive ability

[14,24], can be a useful aid to the costly and time consuming

experiments for determining the intrinsic viscosity. The

method can also be used to screen existing databases or virtual

combinations in order to identify combinations with desired

intrinsic viscosity. In this case, the applicability domain will

serve as a valuable tool to filter out ‘dissimilar’ combinations.

4. Conclusion

A novel QSPR model was developed in this work that can

predict intrinsic viscosity using molecular descriptors. Using a

data set of 65 polymer–solvent combinations and a rigorous

variable selection method, eight descriptors were chosen

among the 30 different descriptors that were examined. Several

validation techniques illustrated the accuracy of the produced

model not only by calculating its fitness on sets of training data

but also by testing the predicting abilities of the model. The

encouraging results showed that the QSPR methodology can be

used successfully for deriving estimators for the intrinsic

viscosity and other polymer properties. Moreover, it
overcomes several of the limitations experienced by empirical

models.
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